Baindur, S. "Materials Requirements for Nuclear Hydrogen Production Technologies," Canadian Materials Science Conference, CMSC 2007, Hamilton ON, June 2007

## Materials Requirements for Nuclear Hydrogen Production Technologies

Satyen Baindur
Ottawa Policy Research Associates, Inc.

http://ottawapolicyresearch.ca

## Hydrogen Production

- ▶ For Future Transportation Fuel
- ► For Current Hydrocarbon Refining
- ▶ For Other Chemical Industry Applications
- ► H<sub>2</sub> Production Methods Today:
  - Separation from
    - Hydrides Hydrocarbons e.g. steam reforming of methane
    - Hydrides Water e.g. electrical hydrolysis (electrolysis)
  - Heat or electricity required is produced by burning hydrocarbons

## Hydrogen Production

- Water Splitting Hydrolysis emissions-free if:
  - Electricity or Heat used is produced emissions-free
  - Carbon Dioxide sequestration when commercialized could yield emissions-free H<sub>2</sub>
- Current Emissions-free Energy Options:
  - Solar Thermal Hydrolysis or Electrolysis
  - Wind Powered Electrolysis
  - Low Efficiency and/or Intermittency severe constraints.
  - Nuclear mature technology unhindered by intermittency issues. Nuclear hydrogen production could use excess power available off-peak hours from NPPs.

## Nuclear Hydrogen Production

#### **Nuclear Power** Heat (steam) and/or Electricity Enables:

- High Temperature Thermal Hydrolysis (thermolysis)
- Thermochemical Hydrolysis
- Electrochemical Processes (including High Temperature Electrolysis, HTE).
- Directed Radiolysis (Hydrogen now produced as waste gas in PWR coolant loop from unintentional radiolysis)

## Nuclear Hydrogen Production II

- Dedicated Nuclear Plant for Hydrogen Generation could supply heat and electricity for one or more of the above processes simultaneously.
- Next Generation Nuclear Plants will have higher outlet temperatures; thus greater efficiency, both for nuclear plant and for thermo-chemical and electrolytic processes.
- Fifth Generation Nuclear Fusion when commercialized –
   will enable even higher temperatures and production volumes.

# Hydrogen Production Options And Their Operating Requirements

|                                            | Electrochemical                                   |                                                                                                                             | Thermochemical                                                  |                                                                                                     |
|--------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
|                                            | Water<br>Electrolysis                             | High Temperature<br>Steam Electrolysis                                                                                      | Steam-Methane<br>Reforming                                      | Thermochemical<br>Water Splitting                                                                   |
| Required Temp<br>(Celsius)                 | < 100, at P <sub>atm</sub>                        | >500, at P <sub>atm</sub>                                                                                                   | > 700                                                           | > 800 for S-I and WSP<br>> 700 for UT-3<br>> 600 for Cu-Cl                                          |
| Efficiency                                 | 85 – 90                                           | 90 – 95 (at T>800 °C)                                                                                                       | > 60, depending<br>on temperature                               | > 40, depending on TC<br>cycle and temperature                                                      |
| Efficiency w/ Light<br>Water Reactor       | ~27                                               | ~30                                                                                                                         | Not Applicable                                                  | Not Feasible                                                                                        |
| Efficiency w/ Gas-<br>cooled Reactor (GCR) | >40                                               | >45, depending on<br>power cycle and<br>temperature                                                                         | > 60, depending<br>on temperature                               | > 40, depending on TC<br>cycle and temperature                                                      |
| Advantages                                 | + Proven<br>technology                            | + High efficiency + Can be coupled to reactors operating at intermediate temperatures + Eliminates CO <sub>2</sub> emission | + Proven<br>technology<br>+ Reduces CO <sub>2</sub><br>emission | + Potential for<br>high efficiency<br>+ Eliminates CO <sub>2</sub><br>emissions                     |
| Disadvantages                              | - Low energy<br>efficiency<br>in the near<br>term | - Requires development<br>of durable, large scale<br>HTSE units                                                             | - CO <sub>2</sub> emissions - Dependent on methane prices       | +Aggressive chemistry +Requires very high temperature reactors +Requires development at large scale |

#### The Sulfur-Iodine (S-I) Thermo-chemical Cycle



Baindur, S. "Materials Requirements for Nuclear Hydrogen Production Technologies," Canadian Materials Science Conference, CMSC 2007, Hamilton ON, June 2007

#### Other Cycles Being Actively Investigated

- NH₃-CO₃-Hg (875-975K)
- Hybrid Cu-Cl (805K)
- ♦ Hybrid Cu-SO<sub>4</sub> (1100K)
- ❖Hybrid Zn-SO₄ (1150K)
- NiMnFe (1075K)
- Some new cycles
  - K-Bi (825K)
  - Mg-Cl (875 K)
  - Eu-Br (625 K) (recently identified)

Wilson, Corwin, Sherman, Pickard (2006)

#### Schematic of the 3 Major Components of a Nuclear Hydrogen Production Facility



Adapted from Wang (2006)

Baindur, S. "Materials Requirements for Nuclear Hydrogen Production Technologies," Canadian Materials Science Conference, CMSC 2007, Hamilton ON, June 2007

### Basic R&D Issues in High Temp T-C Hydrogen Production Cycles

- Scaling and Efficiency are the Main Issues for thermochemical cycles

   bench to pilot plant to industrial scale
- ▶ But T-C Cycles Also Present Very Demanding Thermal Management Challenges during Operation.
- Materials Challenges Include:
  - High-temperature Resistance (alloys, ceramics or refractories)
  - Chemical Corrosion Resistance (against acids)
  - Stress Corrosion Resistance (from high Pressure and Temperature conditions)
  - Materials Challenges serious: cause Viability Concerns. (also see Baindur 2007a).

#### Candidate Materials for S-I Cycle (Wang 2006)

- Sulfuric Acid Decomposition
  - Outputs Oxygen and Sulfur Dioxide
    - Alloy 800 and Hastelloys for Reaction Vessel and Piping; also Ceramics
- Bunsen Reaction
  - Produces Hydrogen Iodide and Sulfuric Acid
    - Fe-Si Alloys work well as Reaction Vessels and Concentrators;
- Hydrogen Iodide Decomposition
  - Produces and Separates Hydrogen and Iodine
    - Tantalum and Wolfram (Tungsten) Alloys best corrosion resistance
- Extensive Testing of Candidate Materials Required to move beyond Bench Scale

# Heat Exchanger Candidate Materials (Hechanova UNLV 2005)

- Tensile Property Tests of 3 Nickel-based Alloys: C-22, C-276 and Waspalloy are ongoing at UNLV at (i) Ambient Temperature (ii) 450 C and (iii) 600 C in a nitrogen atmosphere.
- Stress Corrosion Cracking (SCC) for above 3 alloys also measured in 90 C aqueous solution of sulfuric acid and sodium iodide at (i) constant load (ii) slow strain-rate.
- Incoloy-800 also tested for SCC and tensile strength at UNLV
- MIT has tested alloys 800HT and 617 for Heat Exchanger with Catalyst Platinum (Pt) in 2-30 %wt for Sulfuric Acid Decomposition. (Hechanova 2005)

### References

- Chang, J.,Y-W Kim, K-Y Lee, Y-W Lee, W-J Lee, J-M Noh, M-H Kim, H-S Lim, Y-J Shin, K-K Bae, K-D Jung, A Study of a Nuclear Hydrogen Production Demonstration Plant, Nuclear Engineering and Technology, Vol. 39 No. 2, 111-122 (2007).
- 2. Kim, W. G. et al., *Creep Properties of Hastelloy-X Alloy for the High Temperature Gas Cooled Reactor* Key Engineering Materials, vol. 316-328, pp.477-482 (2006).
- 3. Baindur, S. *Materials Challenges for the Supercritical Water-cooled Reactor (SCWR)* Canadian Nuclear Society, Saint John New Brunswick, (CNS 2007) June 2007. (Baindur 2007a).
- 4. Kurata, Y., K. Ikawa and K. Iwamoto, *The effect of heat treatment on density and structure of SiC*, J. Nucl. Mater. 92, 351 (1980).
- 5. Hechanova, A. *High-Temperature Heat Exchanger Development* Presentation, May 2005.
- 6. Wilson, D.F., W.R. Corwin, S. Sherman and P. Pickard, *Materials for Nuclear Hydrogen Production Processes*, Presentation to US DOE Hydrogen Program Annual Review, May 2006.
- 7. Wang, B. *Materials Development Makes Large-Scale Hydrogen Development a Reality,* NHA News, Summer 2006.
- 8. Roy, A.K., R. Karamcheti, L. Savalia and N. Kothapalli, *Metallurgical Stability and Corrosion Behavior of Structural Materials for Hydrogen Generation*, ASTM Conference, Reno, NV, May 2005.
- 9. Wong, B., R. Buckingham, L. Brown, B. Russ, G. Besenbruch, A. Kaiparambil, R. Santhanakrishnan and A. Roy, Construction Materials Development in Sulfur-Iodine Thermochemical Water-Splitting Process for Hydrogen Generation. AIChE, September 2005, Pittsburgh, PA.